Computer Programming I

Instructor: Greg ShawPRIVATE

COP 2210

Algorithms, Pseudocode, and Stepwise Refinement
I. Algorithms
· An algorithm is a plan for solving a problem. Many years ago, we all learned the algorithm for doing long division. Households often have collections of algorithms stored in the kitchen, where they are known as “cookbooks.”

· Once we have an algorithm, we can translate it into a given computer language. This is where methods come from.
II. Pseudocode
· The language used to develop algorithms is known as pseudocode. As the name implies, pseudocode is a “computer-like” language. Pseudocode uses English (or any other spoken language) and any special symbols we choose (e.g. *,/,%,+,-,=,etc), as long as the meaning of each statement is clear.
· The advantage of pseudocode is that it is specific enough to describe a solution in unambiguous terms, yet frees us from the strict syntax requirements of computer languages.

III. Developing an Algorithm – Stepwise Refinement
1. Identify the available inputs (aka: the “givens,” things you know)

2. Identify the desired outputs (i.e. the results you want)

3. Break the problem down into very general, individual “tasks.”
· Say only what needs to be done, and pay no attention yet to how to do it
4. For each task, if you can code it in a few statements, then do so and you’re done. Otherwise, refine each task. That is, break it up into two or more smaller “subtasks.” Again, for each subtask say only what needs to be done, not how.

5. Continue refining each subtask until each can be done in a few statements.

6. Test your algorithm by working problems.

IV. Example
A fixed-rate loan is one where the interest rate does not change over the life of the loan and neither does the monthly payment amount.

With a shorter term loan (say a 15 year mortgage vs. a 30-year one) the monthly payment amount will be higher but the overall savings will be substantial. How substantial?
1. Identify the available inputs
· The principal (amount borrowed)
· The interest rate (as an annual per cent – APR)
· The term of the shorter loan (number of years)
· The term of the longer loan

2. Identify the desired output(s)

 The total savings with the shorter term loan

3. Break the problem down into individual tasks

i. Compute the total of all payments for the shorter term loan (call it shortTotal)
ii. Compute the total of all payments for the longer term loan (call it longTotal)

iii. totalSavings = longTotal - shortTotal
4. Refine the tasks into subtasks

Step iii needs no refinement.

Let’s refine step i:
ia.
Compute the monthly payment amount (let’s call it shortMonthly)
ib.
shortTotal = shortMonthly * number of years of the shorter term loan * 12

Step ib is ready to code.
Step ia is just a matter of looking up the formula (if you are good with a calculator), using a spreadsheet, or visiting one of the many payment calculator sites online. Better still, we will soon know how to compute this in Java.
Step ii is essentially the same as step I but for the longer term loan, so we won’t repeat it here.
Here is the formula for the “equal monthly payment amount”
 -N

Payment = AR / (1 - (1 + R))

 where
A = the principal (amount borrowed)

R = the MONTHLY interest rate, as a DECIMAL

N = the term of the loan in MONTHS
Let’s work an example:

Inputs:

principal:
150000
interest rate (as an annual per cent – APR): 5.5%

term of the shorter loan in years: 15

term of the longer loan in years: 30

Computations:

1. to use the formula, we will first have to convert the interest rate from an APR to a monthly decimal (divide by 100 to go from Percent to Decimal, then by 12 to go from annual to monthly)

2. shortMonthly = $1225.63

3. shortTotal = $1225.63 x 15 x 12 = $220,613.40

4. longMonthly = $851.68

5. longTotal = $851.68 x 30 x 12 = $306,604.80

6. totalSavings = $306,604.80 - $220,613.40 = $85,991.40

