Computer Programming
 I

 Instructor: Greg Shaw

COP 2210

 Class NotesPRIVATE

String Comparisons
I. Testing For Equality: “==” vs. the equals Method
1. To test whether two strings are equal, we cannot use the “==” operator
2. “==” tells us whether the contents of two variables are equal

3. For primitive types, this is the meaning of equality and precisely what we want to test

4. However, for Strings (and other objects) we must remember that what is stored in an object variable is the address of an object (i.e., a reference to an object)

5. So, if two object variables contain the same address, that means that they are both “pointing to” the same String object. It does not mean that they are pointing to two different objects containing the same String, which is what we want to test

6. To test whether two different String objects are equal, we must call the equals method:

if (obj1.equals(obj2))

Assuming obj1 and obj2 are String object variables, method equals will return true if the two Strings “pointed to” are equal, and false if they are not
(Note that either obj1 or obj2 or both may also be String literals or String expressions)
7. Two Strings are equal if they contain exactly the same characters. I.e., if they have the same number of characters and every pair of corresponding characters is equal, including case
8. Examples:

String word = “Java” ;

word.equals(“java”)

is false (“J” vs. “j”)

word.equals(“Java ”)

is false (note the extra space)

word.equals(“Java”)

is true
9. To test for inequality, simply use the “!” operator:

if (! obj1.equals(obj2))

II. The equalsIgnoreCase Method
This method is similar to equals but - as the name implies - is not case-sensitive.

Examples:

String word = “Hello!” ;

word.equalsIgnoreCase(“Hello”)
is false (note “!”)

word.equalsIgnoreCase(“HELLO!”)
is true

word.equalsIgnoreCase(“hElLo!”)
is true

III. The compareTo Method
1. Java does not allow us to use the relational operators <, <=, >, and >= with Strings and other objects. Instead, we use the compareTo method

2. The compareTo method has this syntax:

obj1.compareTo(obj2)

and returns an int

3. The int returned is:

· negative, if obj1 “is less than” obj2
· zero, if obj1 and obj2 are equal

· positive, if obj1 “is greater than” obj2
(For Strings, “is less than” and “is greater than” refer to the lexicographical order of the Strings. That is, where the Strings would appear in a dictionary where the ordering is based on the Unicode values of the characters in the String)
Example: to test whether the String object pointed to by variable s1 “is greater than” the one pointed to by s2, use:

if (s1.compareTo(s2) > 0)

IV. How Java Compares Strings
1. Java compares two Strings by examining each corresponding pair of characters, stopping when it finds the first pair that are not the same character. It then renders a judgment based on this first pair of different characters.
2. In the case where every pair of characters is equal but one String is shorter than the other, the shorter one is considered “less than” the longer.

Assuming that s1 and s2 are two String object variables, the test

if (s1.compareTo(s2) < 0)

is true for each of the following pairs of values of S1 and s2. The reason why is shown for each.

S1
s2
why

“Dog”
“cat”
‘D’ < ‘c’ (68 < 99)

“computer”
“computes”
‘r’ < ‘s’

“program”
“programming”
s1 is shorter

“baseball”
“basketball”
‘e’ < ‘k’ (101 < 107)

“3773”
“88”
‘3’ < ‘8’ (51 < 56)
V. The compareToIgnoreCase Method

This method is similar to compareTo but - as the name implies - is not case-sensitive.
VI. Method Overriding
When comparing objects – including Strings – we should really say “comes before” and “comes after” instead of “is less than” and “is greater than” because we are talking about the natural ordering of the objects.
When we create a class, we get to specify the natural ordering of the objects of that class.

We do this by overriding (i.e., “providing a new definition for”) the compareTo method for objects of our class.
Similarly, we get to say exactly what it means for objects of our class to be “equal” by overriding the equals method.
Method overriding will be covered in Programming II.
