Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

The switch Statement
I. Purpose
Java’s switch statement may be used for decision-making when you are testing an integer type expression – int, long, or char - for equality to one of a number of constants.
In such cases, the switch statement may be less cumbersome and easier to understand than cascaded if statements.

Since Java 1.7, the switch statement may also be used with Strings

II.
Syntax

switch (expression)

{

 case const1 : statements1 ; break ;

 case const2 : statements2 ; break ;

 case const3 : statements3 ; break ;

 .

 .

 .

 case constn : statementsn ; break ;

 default : statementsd ;

}

where

 expression = an int, String, or char expression

 consti = a constant of the same type as the expression

 statementsi = any number of Java statements, separated by semi-colons
III.
 Execution
1. Java finds the constant which is equal to the expression, and executes the associated statements
2. When the break statement is executed, control passes to the statement following the switch.

3. If the actual value of the expression does not appear in any of the case branches, then the statements following the default label are executed, if there is a default label.

IV.
Rules and Details
1. Variables and expressions are not allowed in the case branches. Constants only!

2. No value may appear in more than one case branch
3. The order in which the constants are listed is not important, since the alternatives are mutually exclusive (see Rule 2).

4. The default branch is optional. If the default branch is omitted and the value of the expression does not appear in any case branch, then no action will be taken
5. If no action is to be taken for a value listed in a case label, simply omit the associated statements after that label. But don’t forget to include the break statement!

6. There is no way to list multiple constants in a single case branch. I.e., both of the following constructs are illegal!
// THIS IS NOT LEGAL!

case 1, 2, 3 : statements ; break ;

// NEITHER IS THIS!
case 1..3 : statements ; break ;

7. The only way to execute the same statements for several different values of the expression is this:

case 1 :

case 2 :

case 3 : statements ; break ;

8. No break statement is required after the default branch, or after the last case branch if there is no default branch. This is because the switch statement is exited normally when there are no more statements to be executed

If no break statement appears in a given case branch, then control will “fall through” and begin executing the statements in the next case branch!

It has been estimated that this “fall through” behavior is intended to be used only 3% of the time.
V.
Examples

// Prints an appropriate message about a test score
 // Legal scores are from 0 to 10

String message = "" ;

switch (score)

{

 case 10 : message = "You are a true programming god!" ;

 break ;

 case 9 :

 case 8 : message = "VERY good!" ; break ;

 case 7 : message = "Passing!" ; break ;

 case 6 : message = "Barely passing!" ; break ;

 case 5 :

 case 4 :

 case 3 : message = "Flunking!" ; break ;

 case 2 :

 case 1 : message = "Exceptionally Flunking!" ; break ;

 case 0 : message = "No comment!" ; break ;

 default: message = "ILLEGAL GRADE" ;

}

System.out.println(message) ;

· Also see SwitchDemo.java, online

