Computer Programming I

 Instructor: Greg ShawPRIVATE

COP 2210

Type Conversions
I. “Widening” Conversions and Implicit Conversions
A widening conversion is when a value of a lower (or, smaller) type is converted to a higher (or, larger) type.

Since a widening conversion can never result in a loss of data, this is always permissible. In fact, Java will make this kind of conversion implicitly (automatically).

Example: Storing an int in a double variable

int number = 37 ;

double x = number ;

// number will be automatically converted to a double, 37.0

Since double is a higher/larger/wider type than int – i.e., every int can be represented as a double – this is a widening conversion and is done implicitly.
II. “Narrowing” Conversions

A narrowing conversion is when a value of a higher/larger type is converted to a lower/smaller type.

Narrowing conversions may result in loss of data. E.g., not every double can be represented as an int.

Because of the possible loss of data, Java will not make narrowing conversions implicitly.

Example: Trying to store a double in an int variable

double x = 34.567 ;

int num = x ;
// THIS WILL NOT COMPILE (A GOOD THING, TOO!)

To do a narrowing conversion, the programmer must tell the compiler that he/she is aware that it is a dangerous operation and take full responsibility by doing an explicit type conversion. (See III)
III. Explicit Type Conversions (aka: Type “Casting”)

The syntax of the explicit type conversion is:

(type)expression

where type is a primitive data type.

Example: Storing a double in an int variable

double x = 34.567 ;

int num = (int)x ;
// NOTE REQUIRED EXPLICIT CONVERSION

// x is converted to integer 34 and stored in num.

Note that when a double is converted to an int, it is truncated. I.e., the decimal point and all digits to the right are “cut off.” The value is not “rounded” to the nearest integer.
Etc.

· To “round” a double to the nearest integer, we use one of the methods of Java’s Math class (later).

· Note that type conversions affect the expression only – what is stored in memory is not affected.
· It is sometimes necessary to use explicit type casts to convert object variables from one class to another (but not in Programming I, thanks to Java 1.5!)
IV. Using Explicit Type Conversion to Avoid Integer Division

Suppose these variables have been declared:

int credits ;

// number of credits earned

int gradePoints ;
// total grade-points for all classes

double gpa ;

// the grade point average

and that a value of 15 has been stored in credits and 54 in gradePoints.
Now, to compute the gpa, we use:

gpa = gradePoints / credits ;

What will be stored in gpa?

The answer is 3.0! (A logic error, or “bug”)

Here’s why: 54 / 15 evaluates to 3 (INTEGER DIVISION!) and then the 3 is implicitly converted to 3.0 when stored in gpa.

To avoid this unwanted integer division, we type cast:

gpa = (double)gradePoints / credits ;

This stores the correct value, 3.6, in gpa because the 54 in gradePoints is explicitly converted to 54.0 before the division is done, and a double divided by an int yields a double (mixed-type expressions are promoted to the higher type)
· Note that the type cast is done before the division.
The following would also give us the correct gpa, because again we have a mixed-type expression:

gpa = gradePoints / (double)credits ;

This next one is also correct. Since both operands are double, the result is double.

gpa = (double)gradePoints / (double)credits ;

Finally, consider one more:

gpa = (double)(gradePoints / credits) ;

What will be stored in gpa?
