COP 2210

Laboratory 4: Creating a Class
Partner 1 Name and Section:
__

Partner 2 Name and Section:
__

Objectives:

· To learn how to write a class definition.

· To understand the roles played by the instance variables, constructor, and accessor and mutator methods of a class
· To learn how to declare private instance variables to store the attributes of an object
· To learn how to write a class constructor to initialize the instance variables
· To learn how to write accessor methods (aka: “get” methods) to return the values of instance variables

· To learn how to write mutator methods (aka: “set” methods) to change the values of instance variables
· To learn how to write a method that uses the instance variables to compute a value and returns it
Begin by downloading Circle.java from the class web page and storing it in your src folder.

· In this lab we are going to create a class to model a square pyramid (like the Great Pyramid of Egypt), using the Circle class for reference. A square pyramid has a square base and four triangular sides which meet at the apex.
1:
Open and examine the file Circle.java. The Circle class has all of the major components of a class definition - instance variables, a constructor, and accessor and mutator methods.

2:
Create a Java file called Pyramid.java, which will store the definition of your square pyramid class.

Begin by entering the class declaration (“heading”), opening and closing braces, and instance variable declarations.

Only two instance variables are needed – one to store the length of a side of the base, and the other to store the height of the pyramid. Declare your instance variables to be type int, and don’t forget to use the access-specifier private. Use the Circle class for reference.
Check: _____

3:
The next step is to write and test a constructor. Your constructor will have two parameters, used to initialize the instance variables of the object being created. Use the Circle class for reference.
· Note that the Circle class uses the same names for the parameters as for the instance variables. In that case, keyword this must be used with the instance variables. If you choose different names for the parameters and instance variables, then you need not use this. (More about this next class).

Now that we have IV’s and a constructor, we can create objects. Create a second .java file – with a main method - that will contain a test class (or “driver”) for your Pyramid class. In the main method, create a Pyramid object. Compile and execute. You won’t see any output, but will know that you’ve done everything correctly to this point.
Check: _____

4:
Next up: accessor methods. Add two “get” methods to your Pyramid class to return the side length and height, respectively, of a Pyramid object. Use the accessor methods of the Circle class for reference.

Now in your test class, add statements to call your accessor methods and print the values returned (properly labeled, of course). Compile and execute.
Check: _____

5:
Next up: mutator methods. Add a mutator method called resize() that will change the dimensions of a Pyramid object. This method will have two parameters which are the new side length and the new height. Use the mutator methods of the Circle class for reference.

In your test class, add statements to resize the object and print the new dimensions. Compile and execute.

Check: _____

6:
Add another method to your Pyramid class. This one will return the volume of a Pyramid object, as a floating-point number (i.e., a double). The formula for the volume is

1

 x (base area) x height

3

Where the base area is the square of the side length (since we don’t know how to exponentiate yet, just multiply the length by itself). For 1 / 3, use 1 / 3.0
Add statement(s) to your test class to get and print the volume of your Pyramid object.
Check: _____

Replace the 1 / 3.0 in your formula with 1 / 3, compile and run. Did you get the same result? This phenomenon will be explained next class.
