Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Implementing the Comparable Interface

I. Comparing Objects Like We Do Strings

· We have seen how String objects can be compared. If s1 and s2 are two string objects, then the method call

s1.compareTo(s2)

· returns a negative integer if s1 is "less than" s2

· returns zero if s1 and s2 are equal

· returns a positive integer if s1 is "greater than" s2

(recall that Strings are compared by their lexicographical order, based on the Unicode character set)

· The reason we can do this is that the String class implements Java's Comparable interface.

· To use the compareTo method to compare objects of your own classes, simply have those classes implement the Comparable interface.

· The compareTo method is the only method of the Comparable interface.

· When you implement the compareTo method, you get to tell Java exactly what the “natural order” of objects of your class is.

II. A Rational Number Class Example

Suppose that our Rational class implements the Comparable interface

public class Rational implements Comparable

and has a method toDecimal() that returns the decimal value of the Rational object for which it is called.

Since it’s natural to order Rational numbers by their decimal values, the class implements the compareTo method like this:

public int compareTo(Object otherObject)

{

// downcast Object otherObject to Rational

Rational other = (Rational)otherObject ;

if (this.toDecimal() < other.toDecimal())

return -1 ;
// this comes before other

else if (this.toDecimal() > other.toDecimal())

return 1 ;
// this comes after other

else

// they are equal

return 0 ;

}
Note:

1. our compareTo takes an Object parameter and not a Rational, because our implementation of compareTo must have the same signature as in the Comparable interface

2. this requires us to explicitly downcast the Object parameter to class Rational

III. Details

· Your implementation of compareTo must define a total ordering relationship. That is, these properties must hold for all objects of the class:

· Antisymmetry: sign(x.compareTo(y)) == -sign(y.compareTo(x))

· Reflexivity:
 x.compareTo(x) == 0

· Transitivity:
 if x.compareTo(y) <= 0 and y.compareTo(z) <= 0,
 then x.compareTo(z) <= 0

· In addition, if your class overrides equals, you must make sure that the test x.compareTo(y) == 0 always returns the same value as x.equals(y)
IV. Array Searching and Sorting

· Recall that the Arrays class has static methods for sorting an array and for searching an array using the binary search algorithm (which only works if the array is sorted). (See ArrayMethodsDemo.java)

· If a class implements the Comparable interface, then you can use Arrays.sort and Arrays.binarySearch on arrays of objects of that class. (See RationalSortAndSearch.java)

