Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Abstract Classes and Methods

I. Abstract Classes

A. An abstract class is one from which no objects can be created.

(Classes from which objects may be created are commonly called "concrete" classes).

B. The purpose of an abstract class is to create a common form for all classes to be derived from it.

It establishes a basic form so you can see what is in common among all classes derived from it, and use this as a guide when deriving new classes.

C. You designate a class to be abstract by placing the keyword abstract before the keyword class in the declaration, e.g.

public abstract class BankAccount
D.
Although no objects of an abstract class type may be created, abstract classes may have instance variables and a constructor! Here is why:

Recall that when an object of a subclass is created, the superclass “sub-object” must be created first, via a call from the subclass constructor to the superclass constructor. (See the Inheritance document online)

So, an abstract superclass with instance variables inherited by its subclasses would need a constructor – not to create an object of the superclass type, but to initialize the superclass sub-object (the inherited instance variables) when a subclass object is created.
II. Abstract Methods

A. Recall that methods declared in Java interfaces are not allowed to have an implementation (i.e., no method body). Such methods are commonly called abstract methods.

B. Abstract classes may also have abstract methods. In fact, if a class has one or more abstract methods, the class must be declared abstract.

C. Unlike interfaces, however, abstract classes may also have non-abstract (i.e. “concrete”) methods.

D. Whereas all interface methods are implicitly abstract, an abstract class must explicitly designate methods to be abstract by using keyword abstract in the declaration, e.g.,

public abstract void play() ; // note missing body
E. All abstract methods must be overridden in each subclass, unless the subclass is also abstract.
F. If an abstract method is not overriden in a given subclass, then the compiler considers that subclass to also be abstract and requires it to be so declared.

III. What If a Superclass Method is not Overridden?

A. If a method is not overridden in a particular subclass, then that subclass uses its superclass' version of the method (assuming it is overridden in the superclass).
B. If the superclass also does not override the method, then the version from its superclass is used, and so on up the inheritance hierarchy.

C. This process may ultimately lead all the way up the hierarchy to superclass Object.

