Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Programming Assignment #4
Interfaces and Polymorphism
I. The Ancient and Honorable Game of Nim
Nim is an ancient game with several variations. Here’s one: Two players take turns removing marbles from a pile. On each turn, the player must remove at least one but no more than half of the remaining marbles. The player who is forced to remove the last marble loses.
II. The Assignment

Write a Java program to simulate the game of Nim between two players. Either or both of the players may be a Human, a SmartComputer, or a BelowAverageComputer.

-- The BelowAverageComputer removes a random number of marbles between 1 and n/2 each turn.
-- The SmartComputer removes exactly enough marbles to make the remaining pile size a power of two minus one (i.e. 1, 3, 7, 15, 31, or 63).
· The SmartComputer cannot be beaten if it has the first move, unless the initial pile size happens to be 31 or 63. Naturally, a Human who plays first and knows the winning strategy is also invincible.

-- The Human enters the number of marbles to be removed interactively

Begin each game with a pile of between 20 and 95 marbles, inclusive, where the size is set randomly.
· After each turn, print out the player name, number of marbles taken, and the number of marbles remaining.

When each game ends the winner should be announced and the user asked whether she wants to play another game. If so, the user will enter the players and play order again.
III. Specifications
1. To receive credit for this assignment, you must create a Java interface called Player, and 3 classes that implement it – one class for each of the 3 types of players
2. Your interface will declare two abstract methods:

i. a move method that returns the number of marbles taken
ii. a method that returns the player’s name
· Each player’s name will be entered interactively
3. Implement another class called Nim with a play() method that conducts the game (as shown in class). To receive credit, your play method must call the methods for each player polymorphically
4. Your play method will return the winner’s name when the game ends
5. Design the move method of the Human class so that the human is not allowed to “cheat” (i.e. remove an illegal number of marbles). You know how those humans are!

6. Implement another class called Pile to create and maintain a pile of marbles.

7. The main method of your test class will
· get the game parameters from the user - who’s playing, who goes first, and the names of the 2 Player objects
· create the Player objects

· create the Nim object
· call the play() method and print the winner returned
· after each game, ask whether the user wants to play again.
· Your Nim class must depend only on the Player interface and Pile class, and not on any of the classes that implement Player.

If you do this correctly, your Nim class will not have to modified at all if any new kinds of players are invented (or evolve) in the future. This is exactly why interfaces were invented – to promote software “extensibility”
· For max credit, the individual player classes and the Pile class must not depend on one another
Recall that class A “depends on” class B if it creates objects of B, has a method parameter that is a B, calls static methods of B, or accesses static constants of B.
IV. Due Date: Thursday, October 29th, at 12:30
V. Upload 2 Files to Canvas
1. A zip file containing your NetBeans project folder
2. A Word doc to receive feedback. The Word doc may be empty or it may include your name and/or a favorite quote. The Word doc is a separate upload – it must not be included in the zip. Click the [+] button after uploading the zip
· No need to include an output file or 10,000 screen shots!
· No need to generate the html files, but make sure your classes and interface adhere to the style and documentation standards discussed in class and online in Unit 1. “Documentation” means both Javadoc and internal comments.
· This should not need to be said at this point but test your program thoroughly and exhaustively and monitor the output closely to make sure everything is working correctly before submitting it!
· See the “Submitting Your Assignments” document online to make sure you don’t lose credit for not following directions

VI. Development Tip

The move method of the SmartComputer class is the only method that requires any logic, so you might want to save it for last, after everything else is working correctly. In the mean time, have it behave like the BelowAverageComputer, or just take 1 marble, whatever. That way, your program will run and you will have the majority of the credit “in the bank.” Then, you can turn your full attention to the SmartComputer’s move method
· After each turn, print out the player name, number of marbles taken, and the number of marbles remaining. Otherwise, your program cannot and will not be graded.
