Computer Programming II



    
 Instructor: Greg ShawPRIVATE 

COP 3337






    
 

Programming Assignment #5
(Inheritance and Polymorphism)

I. Create a Point3D Class

  
Create a class to represent a point in Three-Dimensional space.  This class will have private int instance variables x, y, and z, to store the coordinates of the point, a constructor, an overridden toString() method to return the coordinates as a String, and “get” methods that return the values of each of the instance variables.
II. 
Define an Abstract Class to Represent a 3-D Shape
Your Shape3D class must meet these specifications:

1. has a private instance variable of class Point3D (aka: a “member object”) that stores the center of the shape

· For full credit, the Point3D member object should be created in the Shape3D constructor. I.e., the implementation of the center should be “hidden” from the client code (the test class) and also from all subclasses. (See CompositionDemo.java)
2. overrides toString() to return a string containing the coordinates of the center (hint: call the toString() method of the Point3D class)

3. has a concrete method that computes and returns the distance of the center of the shape from the origin (i.e., point 0,0,0)

4. has abstract methods that compute and return the surface area and the volume of a shape
5. implements Java’s Comparable interface so that Shape objects are ordered by volume, ascending
III.
Derive Concrete Subclasses for Sphere, Parallelepiped, Cylinder, and Cone Shapes  

1. The constructor for each of these classes takes parameters for the x, y, and z coordinates of the center. In addition, the Sphere constructor takes the radius, the Parallelepiped constructor the length, width, and height, and the Cone and Cylinder constructors the height and radius.
2. Since these are concrete classes, each must implement the abstract methods of the superclass that compute and return the surface area and the volume
3. Each class will also override toString to return a string containing the class name, coordinates of the center, and the other data values (radius, length, width, etc.)
IV. Write a Driver Class to Test Your Shape Hierarchy

1. Create one object of each concrete class – using the data given below - and store them in an array of Shapes.  
· The data should be “hardwired” into the code; no interactive input – too many input values!
2. Using a loop, traverse the array and print the following information only for each object – the actual class of the shape (Sphere, Cone, etc), all the input data, and the surface area
3. Sort the array in ascending order by volume.  To get credit, this must be done via a call to a sort method of the Arrays class. 
4. Using a loop, print ONLY the class name and volume for each object in the sorted array.

5. Sort the array again, but this time in descending order by the distance from the origin.  To earn credit, this must be done via a call to a sort method of the Arrays class. No credit for sorting ascending and then reversing the array (seen it!)


Hint: create a class that implements java’s Comparator interface. 
6. Using a loop, print ONLY the class name and distance from the origin for each object in the sorted array.
V. Test Data to be Used


Sphere:


Center at (8,5,2), radius of 14

Cone:



Center at (-1,4,-5), radius 11, height 15

Cylinder:

Center at (5,-7,-35), radius 14, height 12

Parallelepiped:
Center at (9,16,7), length 19, width 9, height 13 
VI. Formulae
· The distance of a point in 3D space from point (0,0,0) is the hypotenuse of a right triangle where the adjacent sides have lengths of z, and sqrt(x2 + y2), as shown in class.

Sphere:




  



  4







area  =  4 ∏ r2

volume  =      ∏ r3




          
  

  
  3

Cylinder:

area =  2 ∏ r2 + 2 ∏ r h
   volume = ∏ r2 h


Cone:



volume =  ∏ r2 h


area = ∏ r(r + s)








    ———————









  3







where s (the slant height) = √ r2 + h2

Parallelepiped: AKA a “right rectangular prism.” It’s a box, like a shoe box.  Figure it out.
VII. Upload 2 Files to Canvas
1. A zip file containing your project folder and the output

2. An empty Word doc to get feedback 
· No need to generate the html files, but make sure your classes are properly documented – both Java “documentation comments” and internal documentation – and adhere to all the style considerations covered in Unit 1 and discussed in class 
VIII. Due Date:  Tuesday, November 17th at 12:30p
IX. What to Review

· Composition of Classes (aka: “Aggregation”)

· Java’s Comparable Interface and the compareTo Method

· Java’s Comparator Interface and the compare Method
· The two overloaded sort Methods of Java’s Arrays Class

· Superclasses, Subclasses, Inheritance, and Polymorphism
· Calling Inherited Methods 

· Calling the Superclass’ Version of an Overridden Method from a Subclass Method
· All of these have been discussed/demonstrated in class, and appear in the online notes and demo programs in the Interfaces and Inheritance units.  So, for the Google-Dependent, chill!
X. A Word to the Wise

Before submitting your assignment, make sure that it meets all specifications and that your volume, surface area, and distance formulas are correct. Use a calculator. The formulas are Programming I stuff yet constitute a considerable portion of the grade. I.e. programs must work.
