Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Programming Assignment #6
"A Generic Linked List Class"

I. The Term Class

Create a class to represent a term in an algebraic expression. As defined here, a term consists of an integer coefficient and a nonnegative integer exponent. E.g.
· in the term 4x2, the coefficient is 4 and the exponent 2
· in -6x8, the coefficient is -6 and the exponent 8
Your class will have a constructor that creates a Term object with a coefficient and exponent passed as parameters,
and accessor methods that return the coefficient and the exponent. Your class will also override toString to return a Term in this general form:

 ax^b

where a is the coefficient and b the exponent
with these special cases:
	Case
	Returns

	a = 1, b = 1
	x

	a = 1
	x^b

	b = 1
	ax

	b = 0
	a

Assume that the coefficient will never be zero.
II. The Generic Node Class

This has already been done, declared as an inner class in Polynomial. Do not modify it in any way. It will compile when you complete your Term class
III. The Polynomial Class

A “skeleton” of the Polynomial class you are to use is on the class web site. All you have to do is write the bodies of the methods.

· NO CREDIT if you declare any new instance variables or methods or modify any of the method declarations
As defined here, a polynomial is a sequence of terms with the same variable, x. E.g.

1. 3x2 + 4x4 + x6

2. 2 + 5x2 + 6x3 + 2x7

3. 4x10
The terms of polynomial 1 are (3,2), (4,4) and (1,6). The terms of polynomial 2 are (2,0), (5,2), (6,3) and (2,7). Polynomial 3 has only one term (4,10)

· To receive credit for this assignment, you must use no data structures other than your own Polynomial objects (i.e. your linked list of generic Nodes)

Note that the Polynomial class has:
· A constructor that creates a null Polynomial (a Polynomial with 0 terms)

· A copy constructor that creates a new Polynomial as an exact duplicate of an existing one (aka: a “deep” copy)
· A method with signature

public void addTerm(int coefficient, int exponent)
which creates a Term and adds it to the list
· The terms on the list are stored in ascending order by exponent (see III., above) so there is never a need to “sort” the list.
· A method with signature

public Polynomial polyAdd(Polynomial p)
which adds this Polynomial to p and returns the sum
· A method with signature

public Polynomial polyMultiply(Polynomial p)
which multiplies this Polynomial by p and returns the product
· An overridden toString method that returns a String representation of a polynomial as a sum of terms. For example polynomial 1 above would have this String representation:

3x^2 + 4x^4 + x^6

· A private method with signature
 private void collectTerms()

which “collects” like terms of this Polynomial. E.g.

Before:
x^2 + 3x^2 + 2x^2 + 3x^3 + 5x^4 + 2x^4

After:
6x^2 + 3x^3 + 7x^4

Hint: You may want to create a temporary Polynomial to store the collected Terms

· Polynomials should always be printed with like terms collected
IV. The Test Class

Test class PolynomialTester.java is available online. Make no changes to the test class.
V. Upload 2 Files to Canvas
1. A zip file containing your NetBeans project folder and the output

2. A Word doc to receive feedback. The Word doc is a separate upload – it must not be included in the zip. Click the [+] button after uploading the zip

· Make sure your classes adhere to the style and documentation standards in Unit 1 and discussed in class. “Documentation” means both Javadoc and internal comments.

VI. Due Date – Thursday, November 26th, 12:30p
VII. Helpful Hints! Divide and Conquer!
1. Begin by coding the Term class and Polynomial methods toString and addTerm. For now, have addTerm simply add each new Term at the head of the list or at the end. This will enable you to run the program and verify that your Term class is correct and that new Terms are indeed being created and added to the list.
2. Code the polyAdd and polyMultiply methods. (Did someone say you would never use that algebra?) Once completed, along with the temporary version of addTerm, you will have a majority of the credit in the bank. (
3. Now, modify the addTerm method so that each new Term is inserted in it’s proper place in the list. An algorithm will be discussed in class. Note that none of the other methods will need to be modified in any way. More credit in the bank.
4. Code the collectTerms method. An algorithm will be discussed in class.

5. Code the copy constructor.

With linked lists,

C R A Y O N S

are more important
than keyboards!
~Doug Cooper, UC Berkeley

