Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

The Collection Interface and the Collections Class

I. Introduction

1. The Collection interface is the base interface in the collections hierarchy from which interfaces List and Set are derived.

2. The Collection interface specifies operations performed on an entire collection (aka: "bulk" operations), such as adding an element to a collection, clearing a collection, converting a collection to an array, determining a collection's size, determining whether a collection is empty, etc.

3. The interface also has a method that creates an object - called an Iterator - that enables you to access the individual elements of the collection.

4. The Collections class also contains static methods for manipulating collections polymorphically, including searching and sorting.

5. The Collections class is in Java’s utilities package:

import java.util.Collections ;

II. Collection Iterators

If c is a collection, then
Iterator cursor = c.iterator() ;

creates a collection Iterator called cursor and associates it with collection object c. Then,

· cursor.hasNext()

returns true if c has another element, otherwise returns false
· cursor.next()

advances cursor to next element of c and returns it

· cursor.remove()

removes the element of c pointed to by cursor

· CollectionDemo.java shows how to create a Collection Iterator and use it to traverse a Collection

III. Lists

1. A List is a variable-length (unlike an array) ordered Collection that (unlike a Set) may contain duplicates.

2. The first element of a List has index 0.

3. In addition to the interface inherited from Collection, List provides methods for manipulating elements of a list using their indices.

4. Interface List also has a method that creates an object - called a ListIterator - that enables you to access the individual elements of a List.

5. Interface List is implemented by classes ArrayList, LinkedList, and Stack (and “legacy” class Vector).

· ListIteratorDemo.java shows how to create a List Iterator and use it to traverse a List forwards and backwards

IV. Some Major List Methods

In these examples, list is an object of a class that implements the List interface (i.e. an ArrayList, LinkedList, or Stack)

Accessor Methods

· list.get(i)

returns a pointer to the object at index (i.e., position) i (where the first object is at index 0)

· list.size()

returns the size of the list (the number of objects stored)

· list.isEmpty()

returns a boolean indicating whether list is empty (same as testing list.size() == 0)

· list.contains(obj)

returns a boolean indicating whether list contains an object equal to parameter obj. The class of the parameter must override the equals method
· list.subList(start, end)

returns a contiguous portion of list, consisting of objects at indices start through end – 1. E.g., x.subList(3,6) returns a 3-element list consisting of the elements of x at indices 3 through 5 (which are elements 4, 5, and 6 of x)

· The list returned is a “list view” of the original list so any changes made to the sublist will affect the original list and vice-versa.

Mutator Methods

· list.add(obj) ;

appends obj to end of list (size increases by 1)
· list.addFirst(obj) ;

inserts obj as the new first element of list (i.e. at index 0) - all elements are "shifted down" one position (size increases by 1)
· list.add(i, obj) ;

inserts obj into the list at index i - all elements from the current ith element to the last are "shifted down" one position to make room (size increases by 1)
· list.set(i, obj) ;

replaces the object at index i with obj (size is unchanged)
· list.remove(i) ;

removes the object at index i from the list and returns a reference to it (all elements from the current element number i+1 thru the last element are "shifted up" one position to “fill the hole”, and the size of the list is reduced by one)

· list.remove(obj) ;

searches list for an object equal to the parameter obj. If found, it is removed and true is returned; else, returns false. The class to which the parameter belongs must override the equals method
· list.clear() ;

clears the list (resets size to 0)

· list.addAll(list2) ;

concatenates all elements of list2 to the end of list
V. Getting a "List View" of an Array

Java's Arrays class has a static method called asList, which returns a list view of an Array. This allows you to process an array as if it were an ArrayList (or LinkedList)

list = Arrays.asList(array-obj) ;

As the name implies, a "list view" is another way of looking at an array. It is not a copy of the elements of the array. So any changes made to the list view affect the original array, and vice-versa
See ArrayAsList.java

