Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

The "==" Operator vs. the equals() Method

I. Comparing Objects Using "=="

· Java’s equality operator (==) returns true or false depending on whether its two operands are "equal"

· When comparing primitive-type variables for equality, as in

if (x == y)

true will be returned if the value stored in x is the same as the value stored in y; otherwise, false will be returned

· It works exactly the same way when the operands are object variables, but you must remember:

· The contents of an object variable is an object reference - the address of the object - and not the object itself
· So, if a and b are two object variables, the test

if (a == b)

returns true if and only if both a and b are pointing to the same object!

· If a and b are pointing to different objects, then "==" will always return false, even if the two objects "pointed to" contain the same values in their instance variables

II. Behavior of the Inherited equals() Method

· As defined in class Object (the ultimate superclass from which all other Java classes are derived), method equals() has exactly the same behavior as the equality operator (==)
· If you do not override equals() in your class (and your class is not derived from another class which does override it), then the equals() method of superclass Object will be called
· Program NoOverriding.java shows that the behavior of the inherited equals() method is the same as the "==" operator
III. Overriding the equals() Method
· Recall that superclass methods are commonly overridden in subclasses to provide a more appropriate implementation
· Method equals() is usually overridden to indicate whether the actual objects "pointed to" -- and not the pointers (or, references) -- are "equal" (i.e., contain the same data)
· When overriding equals(), we get to say just what it means for two objects of our class to be "equal”
· Program YesOverriding.java shows how to override equals()
