Computer Programming
II

 Instructor: Greg ShawPRIVATE

COP 3337

Introduction to Exception-Handling

I. Basic Concepts

· An exception is a runtime error (i.e., occurs during program execution)
· Java defines many different classes of exceptions, all of which extend superclass Exception
· You may also define your own exception classes that extend Exception or any of its subclasses
· If a program contains a block of code known as an exception-handler for a particular class of exception, then when that exception occurs control will be transferred to the handler.
Otherwise, the program will terminate
II. Benefits of Exception Handling

1. If a problem cannot be resolved at the point where it occurs, the exception-handling mechanism allows you to hand the problem off to someone else (the handler) higher up the "chain of command" who is able to resolve it
For example, suppose that method A calls method B and method B in turn calls method C, and that an exception occurs in C. Also suppose that method A must regain control to take corrective action at the source, and that only A has an exception handler.

When the exception is thrown in C, since C does not have a handler, control returns to B. Since B also does not have a handler, control returns to A where the handler code is executed. Then control passes to the next statement in A.

· Only the exception-handling mechanism is able to "unwind" the stack of method calls like this and return to the source of the error
· The “returns” described here are not normal returns from a method, where control returns to the calling method. These returns are only to look for a handler

2. Instead of checking for and dealing with a particular problem at multiple points where it may occur, you deal with it only in one place -the handler.
This makes your program shorter by eliminating duplicate code and easier to understand and maintain by separating the code that describes what the program does from the code executed when things go wrong.

III.
 The Three Components of Exception-Handling: try, throw, and catch

A. try Blocks (aka: guarded regions)

1. A try block is simply a statement block preceded by the keyword try. E.g.,

try

{

 statements
 }

2. If a block of code contains statements that may cause an exception to be thrown, then that block should be enclosed in a try block
3. If a block of code calls methods and exceptions may be thrown in those methods, or in other methods called by them, then that block should also be enclosed in a try block.

4. The try block must also enclose any code that should not be executed if an exception occurs.

B. The throw Statement

1. The throw statement creates an exception object that is passed out of the method in which it occurs. However, this object is not returned to the statement that called the method, but to the handler
2. syntax:
throw new exception-type() ;

or,

throw new exception-type(string-arg) ;
The string argument contains information about the type of the exception, but is optional for standard exceptions (since all standard exceptions have a default constructor and a constructor that takes a string arg)
C. catch Blocks (aka: exception handlers)

1. catch blocks follow try blocks and contain code that is executed when an exception is thrown
2. The catch handler looks kind of like a method definition, having this syntax:
catch (exception-type exception-parameter-object)

{

statements
// exceptions of exception-type

// are handled here

}
3. The parameter object contains information about the exception thrown
4. There may be multiple catch blocks - one to handle each type of exception that might be thrown
5. After the statements in the catch block are executed, control passes to the statement following the block. Control does not return to the try block.

IV. Exception Specifications (aka: “Throw Lists”)

A. If a method may throw an exception and you do not wish to provide a handler, the method heading must specify the type of exception, or the compiler will complain.
B. This is done in an exception specification (aka: a “throw list”), which consists of the keyword throws followed by a list of exception types (separated by commas). The throw list follows the parameter list in the method declaration. E.g.
 public static void main (String [] args) throws IOException
 public void doSomething() throws exceptionclass1,

 cxceptionclass2, exceptionclass3
C. Note that this applies to “checked” exceptions only. For “unchecked” exceptions the compiler does not require anything. For more on checked vs. unchecked exceptions, see “More on Exception-Handling” later in this unit
V. "Generic" Exception Handlers

A. To create a handler that will catch any type of exception, just catch superclass exception type Exception. E.g.

catch(Exception e)

{

 .

 .

 .

}

All exception classes – whether from the Java library or programmer-defined are subclasses of Exception
B. If a generic handler is used it must appear last, after all other handlers. If not, it will "preempt" exceptions that would otherwise be caught by a type-specific handler
