Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Lord of the Files

Working with Data Files in Java

I. Concepts and Terms
· A file is an organized collection of information stored on a disk, tape, or other storage medium
· Files may contain anything - documents, spreadsheets, graphics, programs, data, music, etc.

· Input files contain data to be read by a program.

· Output files contain the results (output) of a program.

· During the life of a file it may be both an input file and an output file, but not at the same time. For example, an output file created by one program could later be used as input to another program.
· Files are either binary files or text files.
· Binary files contain coded information that can only be read by the program that produced it, or by some other special program. Examples of binary files include pictures, sounds, music, videos, executable programs, spreadsheets, word-processing documents, etc.
· Text files contain only ASCII/Unicode characters and are therefore "generic," and can be read by any program (Word, WordPad, NotePad, NetBeans, etc). Examples of text files include Java source code (the .java files), .txt files produced by NotePad, and documents produced by word processing programs but saved as "plain text."
· Files are either sequential access or random access.
· Sequential access means that the file must be read/written in order from the beginning to the end. The only way to get to, say, the fifth line (or, "record") of the file is to read/write lines one through four first. Think of a cassette tape.
· Random access means that any record of the file may be directly read/written at any time, regardless of where it is located in the file. Think of a CD (compact disk).

· This document explains how to work with sequential text files in Java programs.

II. Imports and "Throws Clauses"

· To work with data files, we need to import several classes that are in Java's "io" package.

For output files: IOException, PrintWriter, and possibly FileWriter (see VII., below).

For input files: IOException and File (for input files to be read by Scanner)
· When working with data files, exceptions may be thrown. The Java compiler requires you to acknowledge this in either of two ways:

1. provide an exception handler (a special block of code that is executed when an exception occurs), or

2. simply tell the compiler that you are aware of the possibility of an exception and take responsibility should one occur, although you do not wish to "handle" it. This is done by appending a "throws clause" to the heading of a method that may throw an exception, or that calls a method that may throw one. E.g.,

public static void main(String[] args) throws IOException

· Note that if you do choose to handle or “catch” the exception you must still use the throws clause
· Exception handling will be covered later this semester

III. Reading Data from Input Files using Scanner
Our old friend the Scanner class makes it very easy to work with input files.
Instead of creating a Scanner object associated with System.in, or with a particular String object, we simply create one associated with a particular File object. The syntax is:

Scanner name = new Scanner(new File (filename)) ;

Here are some examples:

Scanner reader = new Scanner(new File(“C:\\users\\Greg” +

 “\\Desktop\\3337\\CD-data.txt”)) ;

Scanner readFile = new Scanner(new File (“E:Grades.txt”)) ;

Scanner fileIn = new Scanner(new File (“Votes.in”)) ;

· In the first example, Scanner object reader is associated with file CD-Data.txt, located in folder 3337 on the Windows 7 Desktop for user account “Greg”
· Note that two backslashes must be used instead of one in a String literal. One backslash is how Windows indicates a folder, but the Java compiler interprets the backslash as the escape character. In Java, "\\" is the escape sequence for the backslash! (When entering a file name interactively, only one backslash is used)
· In the second example, Scanner object readFile is associated with file Grades.txt, located in the root directory of E:
· In the last example, no path is specified for the file Votes.in. In that case, the file must reside in your project folder. I.e., if your project folder is “Program 1” then place the file in that folder and not in the src folder or any other subfolder.
If the specified file does not exist in the specified folder, or the folder does not exist in the specified path, a FileNotFoundException is thrown!
· After creating the Scanner object, we read data from the file using the familiar methods hasNext(), next(), nextInt(), nextDouble(), and nextLine(). (See document, “Intro to the Scanner Class”)
IV. The PrintWriter Class (for output files)

To write data to an output file you create a PrintWriter object associated with the file. The syntax is:

PrintWriter object-var = new PrintWriter(filename) ;

where filename is a String literal, variable, or expression. E.g.

PrintWriter outfile = new PrintWriter("output.txt") ;

You can also create a PrintWriter object associated with a File object. E.g.

 File outputFile = new File(“output.txt”) ;

 PrintWriter outFile = new PrintWriter(outputFile) ;

 or,

 PrintWriter outFile = new PrintWriter(new File(“output.txt”)) ;

Naturally, the rules regarding the file path are the same as for input files (see III., above), with one important difference:

If an output file does not exist, it is automatically created. If it does exist, it is destroyed and re-created.

· The PrintWriter class “overrides” methods print, println, and printf so that writing to a file is the same as writing to the screen.

You just call those methods for a PrintWriter object instead of for the PrintStream object System.out.
Method overriding will be covered in detail later this semester.
V. Closing a File

When done with a file, you must "tie up loose ends" relating to the file by calling the close method for your PrintWriter object. Otherwise, data may be lost! E.g., for the PrintWriter object created above:

outfile.close() ;

VI. Examples

For examples of working with sequential text files, see the “Magic 8 Ball” program (input files and Scanner methods hasNext and nextLine) and the file-oriented “Bank” program (input files and Scanner methods hasNext, next, and nextDouble, and output files)
VII. Opening an Output File in Append Mode using the

 FileWriter and PrintWriter Class
Recall that when you create a PrintWriter object as shown in IV., above, the file is opened in overwrite mode. I.e. if the file already exists, it will be destroyed and re-created (overwritten).
Files may also be opened in append mode, so that anything written to the file will be appended to the end of the previous contents instead of overwriting it.
To open a file in append mode, you must first create a FileWriter object using the two-argument constructor. The first argument is the file name and the second is a boolean indicating the mode - true for append mode or false for overwrite mode (the default). Then, pass the FileWriter object to the PrintWriter constructor.
For example:

FileWriter myWriter = new FileWriter(“myOutputFile.txt”,true) ;

PrintWriter toFile = new PrintWriter(myWriter) ;

Naturally, this can also be done in one statement:

PrintWriter toFile = new PrintWriter(new FileWriter
 (“myOutputFile.txt”,true)) ;
