Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Generic Classes and Methods
I. Generic Classes
A generic class is one that can be customized to work with objects of a particular class.
Since Java 1.5 (aka: Java 5), “genericity” has been implemented via the use of type parameters (aka: type variables). Just as a parameter is a value passed to a method when the method is called, a type parameter is a class type that is specified when an object is created.

Example: Java’s ArrayList class is defined like this:

public class ArrayList<E>
where E is the type parameter. E represents a class to be specified when an ArrayList object is created, e.g

 ArrayList<BankAccount> accounts = new ArrayList<BankAccount>() ;
The ArrayList method get – which returns the element stored at the specified index in the list – has this declaration:

 public E get(int index)

since the return-type is whatever class of objects is stored in the list
Similarly, the declaration of our linked list class (MyLinkedList.java, online) is:

public class MyLinkedList<E>
and its append method has this declaration:
 /**

 * Append an object to the end of the list.

 * @param x the object to be appended

 */

public void append (E x)

since the type of the object to be appended is whatever class
of objects is stored in the list.
II. Generic Methods
A generic method is a method with one or more type parameters.

Generic methods may be defined inside generic classes or ordinary (non-generic) ones.
In a generic method, the type parameter – enclosed in angle brackets – must appear just before the return-type
For example, consider this partial definition of a class called ArrayUtil, which contains static methods for manipulating arrays, and the generic method printArray:

public class ArrayUtil

{

 /**

 * Prints all elements in an array of any type.

 * @param list the array to print

 */

 public static <E> void printArray(E[] list)

 {

 for (E current : list)

 {

 System.out.print(current + " ") ;

 }

 System.out.println() ;

 }

 . . .

}

· Generic method printArray, above, is static and defined in an ordinary (nongeneric) class. You can also define generic methods that are not static, and generic methods may also appear in generic classes.
III. E?

In the above examples, E is a variable name and not a Java keyword. We could have chosen the name elementType or any other legal identifier, but it is customary to use uppercase single-letter names for type parameters, as shown in the following table:
	Name
	Stands For

	E
	 Element type in a collection

	T
	 General type

	S,U
	 Additional general types

	K
	 Key type in a map

	V
	 Value type in a map

If a generic class or method requires multiple type parameters, they are separated by commas. E.g.

public class Pair<T, S>
IV. Comparable and Comparator Revisited

Interfaces Comparable and Comparator are themselves generic types. However, for the sake of simplicity, up until now we have used the pre-1.5, “legacy” interfaces which have no type parameters.
Here are the updated definitions:

public interface Comparable<T>
{

/*

 * Compares this object with the specified object for

 * order.

 * @param o the object to be compared

 * @return a negative integer, zero, or a positive integer

 * as this object is less than, equal to, or greater than

 * the specified object

 */

 int compareTo(T o) ;

}

public interface Comparator<T>
{

/*

 * Compares the two parameters for order.

 * @param o1 the first object to be compared

 * @param o2 the second object to be compared

 * @return a negative integer, zero, or a positive integer

 * as this the first object is less than, equal to,

 * or greater than the second object

 */

 int compare(T o1, T o2) ;

 . . .

}

If we replace the type parameters with a class bound – as in the following examples – we gain the convenience of not having to downcast the parameters.

Example 1 – our Shape3D class (very slightly revised)

public abstract class Shape3D implements Comparable<Shape3D>
{
 . . .

 public int compareTo(Shape3D that)

 {

 // Look, Ma! No downcasting!

 if (this.getDistance() < that.getDistance()) return -1 ;

 if (this.getDistance() > that.getDistance()) return 1 ;

 return 0 ;

 }
 . . .

}

Example 2 – a Comparator class for Rectangles which orders them by area

public class RectangleComparator implements Comparator<Rectangle>

{

public int compare(Rectangle first, Rectangle second)

{

double area1 = first.getWidth() * first.getHeight() ;

double area2 = second.getWidth() * second.getHeight() ;

if (area1 < area2) return -1 ;

if (area1 == area2)
return 0 ;

return 1 ;

}

}

V. Constraining Type Parameters in Generic Methods
Consider this attempt to write a method of the ArrayUtil class (see II., above) that returns the largest value in an array:

public static <E> E max(E[] list)

{

E largest = list[0] ;

for (int i = 1; i < list.length ; i++)

{

if (list[i].compareTo(largest) > 0)

largest = list[i] ;

}

return largest ;

}

As written above, this will not compile! Since the type parameter can be any class, there is no guarantee that it will be a class that implements Comparable, so that we can compare objects using method compareTo. The solution is to constrain, or limit, the type parameter to classes that implement the Comparable interface.
The syntax for constraining a type parameter is seen in this revised method declaration:

public static <E extends Comparable<E>> E max(E[] list)

Now type parameter E will be limited to classes that implement the Comparable interface, and any attempt to call the method with an array of objects of some class that does not implement Comparable will not compile.
(In this context, keyword extends actually means “implements or extends”)
· The constraint type (in this example, Comparable) is also known as a “bound” and may be any class or interface type.
· The type parameter itself may be replaced by a class or interface type bound (see VI., below)
VI. Constraining Type Parameters in Generic Classes

Type parameters to generic classes may also be constrained.

Consider a class that implements an ordered list - a list in which new elements are inserted in ascending (or descending) order -, so that there is never a need to sort the list.

Since inserting a new element in its proper place involves making comparisons, we would need to constrain the type parameter to only those classes that implement Comparable:

public class OrderedList<E extends Comparable<E>>

