Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Hashing
I.
Terms and Concepts
· A hash code is an integer value that is computed from an object

· A hash function (i.e. hash method) is a function that computes the hash code for an object, in such a way that different objects are likely to yield different hash codes
(See the table of some Strings and their hash codes on page 741)

· The Object class has a method called hashCode(), which must be overridden

If x is an object of a class that overrides hashCode(), then

int code = x.hashCode() ;

gets the hash code for object x.
· A collision occurs when two or more distinct objects yield the same hash code. A good hash function minimizes collisions, but it is impossible to avoid them altogether
· A hash table is an array used to implement a hash set. In the hash table, objects are stored according to their hash codes.

· The object’s hash code is used as the index of the element where that object will be stored

· The general term hashing refers to the whole process – writing a hash function for a class, generating hash codes for objects of the class, and storing those objects in and retrieving those objects from a hash table

II.
 Advantages of Hashing
A hash table is a very efficient way to store large amounts of data, because each object is stored at the index equal to its hash code

· To see if an object is in the set, just compute the hash code for the object and check whether there is something stored at that position in the array – no “searching” required

int code = x.hashCode() ;

if (table[code] != null)
// then x is in the set
· To add an object to the set, get its hash code and store it at that position in the array

int code = x.hashCode() ;

table[code] = x ;
III.
 Well, It’s Really Not Quite That Simple
There are two problems with this approach:

1. To accommodate all the possible different hash codes, the hash table array would have to be prohibitively large

· To solve this problem, we create an array of a reasonable size and reduce the hash codes to fit

2. The other problem is the possibility of collisions, which increases as we limit the size of the array. When two objects collide, they must be stored at the same index in the array.

· We solve this problem by declaring the array as an array of links (i.e., Nodes). That is, each element of the array is a pointer to a linked list, hopefully a short one, known as a bucket. So each element points to a linked list containing objects with equal hash codes
IV. Implementing the search, add and remove Algorithms for the Array of Buckets
· To search for an object (the contains operation)

1. Compute the hash code for the object to find the bucket in which the object would be located if it is present

2. Do a linear search through the bucket (linked list) and return true or false indicating whether the object is present
· To add an object to the set
1. Compute the hash code for the object to find the bucket in which the object should be inserted

2. Do a linear search through the bucket

3. If the object is found, do nothing; otherwise, insert the object in the bucket

· To remove an object from the set
1. Compute the hash code for the object to find the bucket which would contain the object if it is present

2. Do a linear search through the bucket

3. If the object is found, remove it; otherwise do nothing

V. Choosing a Reasonable Size for the Array
What exactly is a reasonable size? We don’t want to make the array too big, or there will be many unused elements. On the other hand, the smaller the array, the higher the probability of collisions, and therefore the larger the buckets, which decreases the efficiency of the set operations since we have to do linear searches through the buckets
· Research indicates that a good size is around 30% larger than the expected number of objects to be stored. Further, setting the array size to a prime number reduces the probability of collisions.

VI.
Reducing the Hash Codes
To reduce the hash code, we take the absolute value and then “mod” it by the size of the array:

int code = Math.abs(x.hashCode()) % table.length ;
This assigns a value to code such that 0 <= code < table.length. So code – the reduced hash code - is the index of the element where x is stored (i.e. the location of the bucket)
· For an example of how to implement a hash set using the techniques described above, see Horstmann’s HashSet.java
