Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Computing Hash Codes

A hash function computes an integer hash code from an object, so that different objects are likely to have different hash codes.
I. Hash Codes for Strings

Recall that when an operation involves operands of different types the result is “promoted” to the higher type. When a char is added to an int, the ASCII value of the char is used and an int is returned. E.g. the expression ‘A’ + 1 returns 66 since the ASCII code for the ‘A’ is 65. (The expression (char)(‘A’ + 1) would return ‘B’).
So, one approach might be to add up the ASCII values of all the chars in the string:

int h = 0 ;

for (int i = 0 ; i < s.length() ; i++)

 h = h + s.charAt(i) ;

The problem with this method is that the character values are not scrambled enough. Strings that are permutations of one another – such as “eat”, “ate”, and “tea” would all have the same hash code.

Here is the method the Java library uses to compute the hash code for a String:

final int HASH_MULTIPLIER = 31 ;

int h = 0 ;

for (int i = 0 ; i < s.length() ; i++)

 h = HASH_MULTIPLIER * h + s.charAt(i) ;

E.g. the hash code for “eat” would be 100184 and the hash code for “tea” would be 114704 (since chars ‘a’, ‘e’, and ‘t’ are ASCII characters 97, 101, and 116, respectively).
II. Computing Hash Codes for Your Own Classes
Make up a hash code that combines the hash codes of the instance variables in a similar manner.
Example: The Coin class has 2 instance variables, the name of the coin (a String) and the value (a double). Hash codes are already defined for Strings (see above). For primitive doubles, create a Double object and call the hashCode() method of class Double.
Following is a hashCode method for the Coin class:

public class Coin

{

 . . .

 public int hashCode()

 {

 int h1 = name.hashCode() ;

 int h2 = new Double(value).hashCode() ;

 final int HASH_MULTIPLIER = 37 ;

 int h = HASH_MULTIPLIER * h1 + h2 ;

 return h ;

 }

If there are more than 2 instance variables, combine their hash codes as follows:

int h = HASH_MULTIPLIER * h1 + h2 ;

h = HASH_MULTIPLIER * h + h3 ;

h = HASH_MULTIPLIER * h + h4 ;

. . .

return h ;

· If an instance variable is an int, just use its value as the hash code
· Always use a prime number as the hash multiplier as it scrambles the codes better

III. hashCode() and equals() MUST Be Compatible!
· Objects that are equal – as defined by your equals method – must have the same hash codes.
(After all, if x and y are equal, we don’t want to insert both of them into a set since sets don’t store duplicates)
· The Coin class meets this requirement as two coins are considered equal if their names and values are equal. In that case, the two coins will have the same hash code since the hash code is computed from the name and value fields.

· Whichever instance variables are used in your test for equality, make sure to use those variables (only) in computing the hash codes

· Pitfall: Defining equals() but not hashCode()
In this case, the hashCode method will be inherited from Object. That method computes the hash code from the memory location of the object. The effect is that any two objects are likely to have different hash codes, whether they are equal or not.

· If equals() has not been defined, then do not define hashCode() either!

In that case the equals method inherited from Object is used. That method considers two objects to be equal only if they are identical (i.e., if they are the same object, which is what “==” tests). This is compatible with the inherited hashCode method (see above)
