Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Inner Classes

· We create an inner class by nesting one class definition within another.

· Inner classes are commonly used when one class requires the functionality of another (i.e., the ability to create and manipulate objects of that class), but wants to limit its visibility. I.e., if class B is defined within class A, then inner class B can be hidden from client code that has access to A. (We will see an example of a “hidden” inner class in the upcoming unit on Data Structures.)
· (Recall that classes must be declared public or use "friendly" access. Classes can't be declared private. An inner class declared with friendly access is effectively hidden from all client code not in the same package)

· Outer class methods are allowed to directly access the instance variables and methods of the inner class. It makes no difference whether they are declared public, protected, or private, or use "friendly" access
· An inner class may also be used to implement a “strategy interface,” also known as a “callback.” I.e. using an interface and its “realizing” classes to perform a common task among unrelated classes.
· Section 10.4 in the textbook provides a good example of using an inner class to implement a “callback”

· An inner class may also be nested inside a method. In that case, the class may access the local variables of the method only if they are declared final. This may sound like a huge restriction, but actually is not. The contents of a final variable may not be changed, of course, but in the case of object variables - which store addresses of objects - this means only that the variable cannot be made to point to a different object. However, the object to which it points may still be modified. (See ParamPasser2.java, online)
