Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

OOP Terminology and Concepts

I.
Terminology

Object

A software model of something that exists in the real world or in the imagination. Objects have attributes or characteristics (things they "know") and behaviors (things they can do).

Example:
A “spotlight” object has a specific color and intensity and is either on or off (attributes). And a spotlight object can change color, change intensity, turn on, turn off, and tell you its current color, intensity, and whether it is on or off.
Class

A class is a programmer-defined abstract data type (ADT). An ADT is a domain of objects and a set of operations on those objects.

In Java, the operations are methods, which model the behaviors of the object.

From the point of view of a programmer using the class, the methods are abstract operations because the programmer needs to know only what the methods do and does not need to know how they do it.

Think of a class as a factory that can produce many similar, yet different, objects.

Every Java program defines at least one new class, and typically uses several existing ones
OOP consists largely of
1. Creating objects

2. Manipulating the objects via the methods of the class

Anthropomorphism

"Attributing human characteristics to inanimate objects." We do this with objects when we say they know things (their attributes) and can do things (their behaviors).

E.g., we say that a spotlight object “knows” its color, intensity, and whether it is on or off, and can change its color, intensity, etc.

Instance Variables (aka: “Instance Fields”)

Variables in the class definition that store the attributes of an object
· Each object created has its own copy of the instance variables, since each object “knows” its own attributes
Methods

Modules of code in the class definition that model the behaviors of an object.
· There is only one set of methods shared by all the objects created
Method Call

We make an object do something by “calling” one of the methods for that object.

The syntax of a method call is:

object-name.method-name(arguments)

e.g.,
System.out.println(“Hello, World!”) ;

The arguments are actual data values "passed to" the method when it is called. The method then uses these values in carrying out its task, whatever that may be. (See the handout on methods and programs MethodCalls.java and FunWithRectangles.java).

Some methods take no parameters. We call those methods using an empty set of parentheses, as in:

object-name.method-name()

e.g.,
System.out.println() ;

(This calls the no-argument version of the println method - it just starts a new line of output)
Interface

The set of methods of the class are know as the class interface, because the programmer uses them to interact with the objects.

Implementation

The set of variables in the class definition that determines how the objects are stored in memory.
A programmer using a class is forbidden to access the instance variables directly, and may not even know what they are! The only way to interact with objects is through their well-defined interface -- the methods of the class.

In the real world, we use objects every day through their interfaces, without knowing the details of their implementation. Your home entertainment center, for example.

II. Advantages of OOP over All Other Existing Programming Methodologies

Reusability

Just as hardware is composed of standardized, interchangeable components that can be reused in different devices, so too is OOP software. The basic unit of programming in Java is the class, and classes are easily reused.

Information Hiding

Although programmers must know how to communicate with objects (through the interface), they do not need to know and often do not know how the objects are implemented. The implementation details are hidden from programmers using the class
The big advantage: Since the implementation details are hidden, the creator of a class can change the implementation and all software that works with the older version is guaranteed to work with the newer. (For the first time in the history of programming)

Encapsulation

“Keeping things together that belong together.” I.e., keeping the attributes and behaviors of objects together as the instance variables and methods of a class.

A class is a sealed unit, like a capsule. A programmer who uses a class cannot create new methods for that class, cannot modify the methods, cannot change the class implementation, and cannot access the instance variables directly.

The instance variables of an object may only be accessed through the methods of the class. This is assured by declaring all instances variables private. Always. No exceptions.
Failure to declare instance variables private allows them to be accessed directly – without going through the methods of the class – and is known as “breaking encapsulation.” This is a violation of the Prime Directive of OOP and will cause you to be unhappy with the grade(s) you receive.

Why Breaking Encapsulation is a Serious Offense
1. If a programmer is allowed to access the instance var’s of an object directly, then he/she can – either accidentally or with malicious intent - store illegal or meaningless values in them. The methods of the class typically have safeguards against this
2. If a programmer is allowed to write code that accesses the instance var’s directly, then that code will no longer work if the author of the class changes the implementation

Self-Check Question Which Might Appear on an Exam

What is meant by “breaking encapsulation” and what are two disadvantages of allowing it?

Inheritance

New classes - known as subclasses (aka: derived classes) - can be created from existing ones - known as superclasses (aka: base or parent classes)

Objects of a subclass inherit all the attributes and behaviors (i.e., the instance variables and methods) of the superclass, and typically add others of their own

E.g. suppose we have a class, Ship, that models a ship at sea. Instance variables would include the location (latitude and longitude), speed, and bearing (direction headed), and there would be “get” methods to return each of these as well as “set” methods changeSpeed() and changeBearing().

Now, suppose we create a new subclass, Submarine (no pun intended), from the Ship superclass. Submarines are also ships, so Submarine objects would inherit all the instance variables and methods of the Ship class. The Submarine class would also need to add an instance variable to store the current depth and methods to return the depth and to change it. Obviously these are not needed by Ships that are not Submarines
· Objects of a subclass are automatically objects of the superclass (e.g., every Submarine is a Ship) but the reverse is not true (e.g., not every Ship is a Submarine)

Inheritance - along with its faithful companion, polymorphism - promotes software extensibility as new classes (e.g. Submarine) can be added to the system with no modification of existing classes (e.g. Ship)

Inheritance also reduces code duplication because the instance var’s and methods inherited by the subclass do not appear in the subclass definition

Two Ways to Differentiate a Subclass from Its Superclass
1. Add new instance variables and methods not needed by the superclass
2. Provide a new definition of an existing method that is more appropriate for subclass objects. This is known as method overriding (not overloading) and will be covered later in the current unit

Polymorphism

We treat all objects of a class hierarchy (i.e. classes related by inheritance or classes that implement the same Java interface) as objects of the superclass
E.g. An object-oriented operating system must know how to write data to a variety of devices (hard drive, tape drive, CD, etc) which would be modeled by classes derived from the superclass OutputDevice. As far as the OS is concerned, all of these different output devices - as well as any new ones to be invented in the future - are objects of class OutputDevice

Assume that the OutputDevice class has a method called write. Since objects of the various subclasses are also objects of the superclass, this method may be called for objects of any of the subclasses, and the compiler will not complain
However, each subclass will also have its own version of the write method, which “overrides” the inherited write method of the superclass

· At run-time, the Java virtual machine (JRE) will look at each OutputDevice object, determine the actual subclass to which it belongs, and call the overridden version of write for that subclass
This ability of the same method call to take on “many forms” when called for objects of related classes, accounts for the term polymorphism.
(We will have lots more to say about inheritance and polymorphism later in this unit. Also, Java interfaces and polymorphism)
III. A History Lesson: Procedure-Oriented Programming (aka: “Structured” Programming) vs. Object-Oriented Programming

	Procedure-Oriented Programming
	Object-Oriented Programming

	action oriented
	object oriented

	function

 is basic unit

 of programming
	class

 is basic unit

 of programming

	program is a series
of operations on data
	program is a series
of interactions among
independent objects

	verbs

 in problem specification

tell programmer what

 functions will be needed
	nouns

in problem specification

tell programmer what

 real-world objects

 to model in software

Before OOP, structured programming was the best way that humans had come up with to program.
