Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Intro to The Scanner Class

I. Using Scanner for Interactive Input
· There are several different ways to do interactive input in Java. Most likely you are familiar with the showInputDialog method of the JOptionPane class
· The Scanner class may also be used for interactive input (as well as for file input and for extracting individual tokens from a string)
· Data entered by the user is stored in a temporary memory area known as the input buffer

· When an input statement is executed, the program is interrupted – i.e. execution is suspended until data is read (“extracted”) from the input buffer

· If the input buffer is empty, then the program is interrupted until the user enters more data
· The Scanner class has methods that read (i.e., “extract”) data from the input buffer and store it in program variables.

· Data in the input buffer that is not read by a given method call remains in the buffer to be read by future method calls

· This allows the user to enter multiple data values – separated by whitespace – at the same time
· The “Golden Rule” of Interactive Input: “Never confront the user with an unexplained input prompt – always use a print() or println() statement first to tell the user exactly what input is required”
· When using Netbeans, you must prompt with println() and not with print() or the user will not see the prompt until after the data are entered!!!!!

II. Import the Class, Create an Object

· The Scanner class is in Java’s “utilities” package, so use this import statement:

import java.util.Scanner ;

· For interactive input, create a Scanner object and associate it with System.in, the input stream object that always flows from the standard system input device (the keyboard):

Scanner object-variable-name = new Scanner(System.in) ;

III. Scanner Class Methods next(), nextInt(), and nextDouble()
Assume we have created a Scanner object pointed to by scan (see above). Below are some typical method calls and their effects
· The term “token” means a whitespace-delimited string. Whitespace characters are spaces, tabs, and newlines.

· Scanner methods next(), nextInt(), and nextDouble() skip over any leading whitespace characters, and then extract all consecutive non-whitespace characters, stopping when the next whitespace character is found.
· String s = scan.next() ;

Removes the next token and returns it as a String
· int number = scan.nextInt() ;

Removes the next token and returns it as an int
· double ecks = scan.nextDouble() ;

Removes the next token and returns it as a double
· Regarding nextInt and nextDouble: If the next token is not a valid int or double literal, respectively, then an InputMismatchException is thrown
· See InputDemo.java for examples of how to call the methods of the Scanner class to do interactive input
IV. The nextLine() Method
· The nextLine() method works differently than next(), nextInt(), and nextDouble()

· nextLine() extracts all characters – including whitespace – from the current cursor position on the current line up to and including the newline character (which ends the line). It then discards the newline character and returns everything else as a string
· Example: String line = scan.nextLine() ;

V.
Using Scanner to Extract the Individual “Tokens” From a String
· The Scanner class provides an easy way to "break up" a string into shorter, whitespace-delimited strings called tokens. (Whitespace means spaces, tabs, and newlines)

· Among other things, this allows us to enter multiple input values, separated by spaces, when reading user input using JOptionPane.showInputDialog()

· We create a Scanner object associated with the input string and call Scanner methods to extract each token. We can then process each token separately

· Example: See ScannerDemo.java on the COP 2210 web site
