Computer Programming II

 Instructor: Greg ShawPRIVATE

COP 3337

Stacks
I. What is a stack? FILO and LIFO
1. A stack is an abstract “first-in-last-out” (“FILO”) data structure. This means that the first item placed on the stack will be the last item removed from it.

2. “FILO = LIFO” means that a stack is also a “last-in-first-out” (“LIFO”) data structure. That is, the most recent item placed on the stack will be the next item removed from it.
3. In a stack, only the top element is accessible. Each new item added is placed on top of the stack, and the next item to be removed is always the one on top.

II. Primitive Stack Operations – push, pop, peek,
 isEmpty
1. s.push(obj)

the object obj is placed on top of Stack s
2. var = s.pop()

the object on top of Stack s is removed from the stack and returned
3. var = s.peek()

the object on top of Stack s is returned, but is not removed from the stack (this is like doing a pop and then pushing the same object back)
4. s.isEmpty()

returns true/false indicating whether Stack s is empty (an attempt to pop or peek an empty stack will throw an exception)

(Of course, in Java, it is references to objects that are stored on the stack and returned, and not the actual objects themselves)

III. Examples of Stacks in the Real World
1. A stack of plates in a cafeteria (see diagram on board)

Clean (one would hope!) plates arriving from the kitchen are placed on top of the stack, and each diner takes the plate currently on top of the stack.

2. The “last-hired-first-fired” corporate “down-sizing” algorithm
The next employee to be fired is the one who is on top of the stack (i.e., the most recently hired), and when a new employee is hired he/she is placed on top of the stack and so becomes the next to be let go.

IV. A Software Example – The Stacking of Return Addresses When Methods Are Called

When a method is called, the return address (i.e., the program statement where execution will resume when the method finishes) is pushed. When the method finishes, control returns to the address on the top of the stack, and that address is popped.

For example, consider the following sequence of method calls and returns. The updated stack is shown after each event.

1. the main method is executing
 (the stack is empty)

2. main calls method A (the return address in main is pushed)

	Return address in main

<--- top
3. method A calls method B (the return address in A is pushed)

	Return address in A

	Return address in main

<--- top

4. method B calls method C (the return address in B is pushed)

	Return address in B

	Return address in A

	Return address in main

<--- top

5. method C returns (to address on top, in B, which is popped)

	Return address in A

	Return address in main

<--- top

6. method B returns (to address on top, in A, which is popped)

	Return address in main

<--- top

7. method A returns (to address on top, in main, which is then popped and stack is empty again)
