Computer Programming II

Instructor: Greg ShawPRIVATE

COP 3337

Algorithms, Pseudocode, and Stepwise Refinement
I. Algorithms - Where Methods Come From
· After doing our object-oriented analysis and design, we have a good idea of what classes to implement and what methods each will require. Now it’s time to start actually writing the methods
· A time-honored approach is to use stepwise refinement, or method decomposition, to develop an algorithm
· An algorithm is simply a plan for solving a problem

· A more formal definition: “A finite set of effective operations that describes a solution to a problem.” Finite means that the algorithm must end, and effective means that there must be some way to carry out each of the operations

· Many years ago we all learned the algorithm for doing long division. Many households have collections of algorithms stored in the kitchen, where they are known as “cookbooks”

· Once we have an algorithm, we can translate it into any computer language
II. Pseudocode
· The “language” used to develop algorithms is known as pseudocode. As the name implies, pseudocode is a “computer-like” language. Pseudocode uses English (or any other spoken language) and any special symbols we choose (e.g. *,/,%,+,-,=,etc), as long as the meaning of each statement is clear
· The advantage of pseudocode is that it is specific enough to describe a solution in unambiguous terms, yet frees us from the strict syntax requirements of computer languages
III. Developing the Algorithm - Stepwise Refinement

1. Begin by identifying the major “tasks” that need to be done. Concentrate only on what needs to be done and pay no attention to how to do it
2. For each task, if you can code it in a few statements, then do so and you’re done. Otherwise, refine each task. That is, break it up into two or more smaller “subtasks.” Again, for each subtask say only what needs to be done, not how
3. Continue refining each subtask until each can be done in a few statements
IV. Example
Let’s develop an algorithm for the “getIndexForFit” method of our first assignment. This method returns the index at which the tile can be inserted into the board, or -1 if it can’t be inserted. Let newTile point to the tile to be inserted.
If newTile goes before first tile (T1)

 Insert at index 0 (T2)

Else if newTile goes between two existing tiles (T3)

 Insert between the two tiles (T4)

Else if new tile goes after the last (T5)

 Insert after the last tile (T6)

Else

 return -1

NOTICE THAT WE SAY ONLY WHAT NEEDS TO BE DONE AND PAY NO ATTENTION TO HOW WE ARE GOING TO DO IT! THAT IS THE KEY!

IT CAN ALSO BE HELPFUL TO DRAW PICTURES!

The tasks I’ve identified above are labeled T1-T6.

Some are simple enough that you can go right to the code.

T3 is one that cries out for refinement:

“if newTile goes between two existing tiles”
T3.1 newLeft = value on left side of newTile
T3.2 newRight = value on right side of newTile
T3.3 For each tile on the board except the last

 T3.4 get the tile (let’s call it currentTile)

 T3.5 currentRight = number on right side of currentTile

 T3.6 get the next tile on the board (lets call it nextTile)

 T3.7 nextLeft = number on the left side of nextTile

 T3.8 if currentRight == newLeft && nextLeft == newRight, then

 T4.1 Insert newTile at index ___ and we’re done!

 (Don’t want to give it away entirely)

At this point, you may be able to start coding. Or you may need to refine some of the subtasks. Or you may have identified fewer or different subtasks. Or you may have been able to begin coding earlier. It doesn’t matter. It’s the process that is important! Again, the idea is to say what needs to be done and pay no attention to how to do it, until each task/subtask gets to be simple enough to be done in a few statements.
SUPER DUPER ABSOLUTELY FREE BONUS!

You can take the steps of your algorithm and paste them right into your code. Boom! There’s your comments! Nothing is wasted.

V. The repeat-until Algorithmic Construct

· Although this has nothing to do with the above problem, sometimes it may be easier to think of the condition for exiting a loop rather than for continuing it

· Here is the pseudocode for such a loop, commonly known as a “repeat-until” loop

repeat

 statements

until (condition)

· When condition becomes true, the loop is exited
· Although Java – unlike some other languages - does not have a repeat-until loop, we may easily implement one using our old friend, the do-while:

do

{

 statements

}

while (! condition) ;

· When condition becomes true, the loop is exited
· Obviously, this applies only to situations where the loop body must be executed at least one time
