Computer Programming II

Instructor: Greg Shaw

COP 3337

The this Object Reference

I. What's this all about?

· Every class has a “hidden” instance variable called this, which is a reference to the object for which a method is called

· this is automatically passed to every non-static method (i.e. to every instance method). Since it is passed automatically, this is commonly known as the implicit parameter to the method. this is how a method knows for which object it is called

· In the method body, this may be used either implicitly or explicitly to access the instance variables of the object, and to call other methods for the same object

· For example, suppose we have a class to model rational numbers (i.e., any number which can be expressed as a fraction) with int instance variables numerator and denominator. The Rational constructor, below, initializes numerator and denominator to arguments num and denom, respectively (after checking that denom is non-zero, of course), using implicit references to this. The comments show equivalent statements using explicit references.

public Rational (int num, int denom)

{

.

 .

.

numerator = num ;

// this.numerator = num

denominator = denom ;
// this.denominator = denom

Now suppose the constructor calls a reduce method to reduce the Rational object just created to lowest terms:

reduce() ;

// this.reduce()

II. When must we use this explicitly?

There are three situations where it is necessary to make an explicit reference to this.

1. When there is name ambiguity. I.e., when the name of a method parameter or local variable is the same as the name of an instance variable, and would otherwise shadow or “hide” the instance variable and prevent it from being accessed in the method. E.g.,

public Rational (int numerator, int denominator)

{

 .

 .

 .

this.numerator = numerator ;

this.denominator = denominator ;

2. When it is necessary for a method to return a reference to the object for which is has been called. this enables "chaining" of method calls.

· See TimeTester.java
3. When it is necessary for one class constructor to call another constructor for the same class. This avoids duplicate code.

· See TimeTester.java
III. Static “class” methods just don't get this!

· Unlike non-static “instance” methods, static “class” methods are not passed this when called, since they are not called for a particular object
· This explains why only static methods may be called before any objects of the class exist, and why Java’s main method must be declared static
· This also explains why static methods can not call non-static methods. They have no reference to this to pass along so the non-static method can know for which object it has been called
· Non-static methods may call static methods, however
