Class # | Date | Lecture Topic | Reading | Slides | Assignments | |||||
Week 1 | ||||||||||
1 | 8/27 | Course Overview; Introduction to Machine Learning | I2ML: Ch. 1 | slides1 | ||||||
2 | 8/29 | Supervised Learning | I2ML: Sec. 2.1-2.4 | slides2 | ||||||
Week 2 | ||||||||||
3 | 9/3 | Supervised Learning (cont) | I2ML: 2.5-2.8 | slides3 | ||||||
4 | 9/5 | Bayesian Decision Theory | I2ML: Ch 3 | slides4 | ||||||
Week 3 | ||||||||||
5 | 9/10 | Parametric Methods | I2ML: Ch 4 | slides5 | HW1.pdf | |||||
6 | 9/12 | Parametric Methods | I2ML: Ch 4 | slides6 | ||||||
Week 4 | ||||||||||
7 | 9/17 | Parametric Methods (cont) | I2ML: Ch 4 | slides7 | ||||||
8 | 9/19 | Multivariate Method | I2ML: Ch 5 | slides8   pdf | Homework 1 Due | |||||
Week 5 | ||||||||||
9 | 9/24 | Dimensionality Reduction | I2ML: Ch 6 | slides9   pdf | ||||||
10 | 9/26 | Dimensionality Reduction | I2ML: Ch 6 | slides 10   pdf | ||||||
Week 6 | ||||||||||
11 | 10/1 | Clustering | I2ML: Ch 7 | slides 11   pdf | Project Proposal Due | |||||
12 | 10/3 |
Decision Trees
| I2ML: Ch 9 | slides 12   pdf | hw2.pdf decisiontree.xls | |||||
Week 7 | ||||||||||
13 | 10/8 | Decision Trees | I2ML: Ch 9 | slides 13   pdf | ||||||
14 | 10/10 | Linear Discrimination | I2ML: Ch 10 | slides 14   pdf | ||||||
Week 8 | ||||||||||
15 | 10/15 | Linear Discrimination | I2ML: Ch 9 | slides 15 | ||||||
16 | 10/17 | Midterm Exam | ||||||||
Week 9 | ||||||||||
17 | 10/22 | Kernel Machines | I2ML: Ch 13 | slides 16 | ||||||
18 | 10/24 | Kernel Machines | I2ML: Ch 13 | slides 17 | ||||||
Week 10 | ||||||||||
19 | 10/29 | Hidden Markov Models | I2ML: Ch 15 | slides 18 | ||||||
20 | 10/31 | Hidden Markov Models (cont) | I2ML: Ch 15 | slides 19 | ||||||
Week 11 | ||||||||||
21 | 11/5 | Hidden Markov Models (cont) |
I2ML: Ch 15 | slides 20 | ||||||
22 | 11/7 | Reinforcement Learning | I2ML: Ch 18 | slides 21 | Project Progress Report | |||||
Week 12 | ||||||||||
23 | 11/12 | Reinforcement Learning | I2ML: Ch 18 | slides 22 | hw3.pdf | |||||
24 | 11/14 | Reinforcement Learning | I2ML: Ch 15 | Extra notes Examples | ||||||
Week 13 | ||||||||||
25 | 11/19 | Bayesian Networks | I2ML: Ch 15 | |||||||
26 | 11/21 | Bayesian Networks(cont) | I2ML: Ch 15 | slides 24 | Extra slides | |||||
Week 14 | ||||||||||
27 | 11/26 | Multilayer Perceptrons | I2ML: Ch 15 | slides 25 | Intro to Deep Learning | |||||
| ||||||||||
Week 15 | ||||||||||
28 | 12/3 | Multilayer Perceptrons | I2ML: Ch 15 | hw4.pdf 26 | 12/5 | Final Exam Review/Quesions |
| slides 26 |
|
|