CAP 5610: Introduction to Machine Learning


Course Calendar (tentative)

Class # Date Lecture Topic Reading Slides Assignments
Week 1
1 8/27 Course Overview; Introduction to Machine Learning
I2ML: Ch. 1 slides1
2 8/29 Supervised Learning
I2ML: Sec. 2.1-2.4 slides2
Week 2
3 9/3 Supervised Learning (cont)
I2ML: 2.5-2.8 slides3
4 9/5 Bayesian Decision Theory
I2ML: Ch 3 slides4
Week 3
5 9/10 Parametric Methods
I2ML: Ch 4 slides5 HW1.pdf
6 9/12 Parametric Methods
I2ML: Ch 4 slides6
Week 4
7 9/17Parametric Methods (cont)
I2ML: Ch 4 slides7
8 9/19 Multivariate Method
I2ML: Ch 5 slides8   pdf Homework 1 Due
Week 5
9 9/24 Dimensionality Reduction
I2ML: Ch 6 slides9   pdf
10 9/26 Dimensionality Reduction
I2ML: Ch 6 slides 10   pdf
Week 6
11 10/1 Clustering
I2ML: Ch 7 slides 11   pdf Project Proposal Due
12 10/3 Decision Trees
I2ML: Ch 9 slides 12   pdf hw2.pdf decisiontree.xls
Week 7
13 10/8 Decision Trees
I2ML: Ch 9 slides 13   pdf
14 10/10 Linear Discrimination
I2ML: Ch 10 slides 14   pdf
Week 8
15 10/15 Linear Discrimination
I2ML: Ch 9 slides 15
16 10/17 Midterm Exam
Week 9
1710/22 Kernel Machines
I2ML: Ch 13 slides 16
18 10/24 Kernel Machines
I2ML: Ch 13 slides 17
Week 10
19 10/29 Hidden Markov Models
I2ML: Ch 15 slides 18
20 10/31 Hidden Markov Models (cont)
I2ML: Ch 15 slides 19
Week 11
21 11/5 Hidden Markov Models (cont)
I2ML: Ch 15 slides 20
22 11/7 Reinforcement Learning
I2ML: Ch 18 slides 21 Project Progress Report
Week 12
23 11/12 Reinforcement Learning
I2ML: Ch 18 slides 22 hw3.pdf
24 11/14 Reinforcement Learning
I2ML: Ch 15 Extra notes Examples
Week 13
25 11/19 Bayesian Networks
I2ML: Ch 15
26 11/21 Bayesian Networks(cont)
I2ML: Ch 15 slides 24 Extra slides
Week 14
27 11/26 Multilayer Perceptrons
I2ML: Ch 15 slides 25 Intro to Deep Learning
Thanksgiving Break

Week 15
28 12/3 Multilayer Perceptrons
I2ML: Ch 15 hw4.pdf
26 12/5 Final Exam Review/Quesions
slides 26